Facial reduction for a cone-convex programming problem

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Facial reduction in partially finite convex programming

We consider the problem of minimizing an extended-valued convex function on a locally convex space subject to a finite number of linear (in)equalities. When the standard constraint qualification fails a reduction technique is needed to derive necessary optimality conditions. Facial reduction is usually applied in the range of the constraints. In this paper it is applied in the domain space, thu...

متن کامل

The KKT optimality conditions for constrained programming problem with generalized convex fuzzy mappings

The aim of present paper is to study a constrained programming with generalized $alpha-$univex fuzzy mappings. In this paper we introduce the concepts of $alpha-$univex, $alpha-$preunivex, pseudo $alpha-$univex and $alpha-$unicave fuzzy mappings, and we discover that $alpha-$univex fuzzy mappings are more general than univex fuzzy mappings. Then, we discuss the relationships of generalized $alp...

متن کامل

Adaptive constraint reduction for convex quadratic programming

We propose an adaptive, constraint-reduced, primal-dual interior-point algorithm for convex quadratic programming with many more inequality constraints than variables. We reduce the computational effort by assembling, instead of the exact normal-equation matrix, an approximate matrix from a well chosen index set which includes indices of constraints that seem to be most critical. Starting with ...

متن کامل

Sparse Second Order Cone Programming Formulations for Convex Optimization Problems

Second order cone program (SOCP) formulations of convex optimization problems are studied. We show that various SOCP formulations can be obtained depending on how auxiliary variables are introduced. An efficient SOCP formulation that increases the computational efficiency is presented by investigating the relationship between the sparsity of an SOCP formulation and the sparsity of the Schur com...

متن کامل

Iterative Hard Thresholding Methods for $l_0$ Regularized Convex Cone Programming

In this paper we consider l0 regularized convex cone programming problems. In particular, we first propose an iterative hard thresholding (IHT) method and its variant for solving l0 regularized box constrained convex programming. We show that the sequence generated by these methods converges to a local minimizer. Also, we establish the iteration complexity of the IHT method for finding an -loca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics

سال: 1981

ISSN: 0263-6115

DOI: 10.1017/s1446788700017250